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Abstract. We apply the moment analysis technique to analyze large scale simulations of the Zhang sandpile
model. We find that this model shows different scaling behavior depending on the update mechanism used.
With the standard parallel updating, the Zhang model violates the finite-size scaling hypothesis, and it
also appears to be incompatible with the more general multifractal scaling form. This makes impossible
its affiliation to any one of the known universality classes of sandpile models. With sequential updating, it
shows scaling for the size and area distribution. The introduction of stochasticity into the toppling rules
of the parallel Zhang model leads to a scaling behavior compatible with the Manna universality class.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.65.+b Self-organized systems

The identification of universality classes is one of the most
important and still open problems in the field of self-
organized criticality (SOC) [1]. In spite of the great rele-
vance of this issue, however, it has not been possible until
very recently to clearly discern differences in the critical
behavior of the various SOC models proposed so far. The
situation seems now to have been settled in the case of the
Bak-Tang-Wiesenfeld (BTW) [2] and the Abelian Manna
[3,4] models that represent, respectively, the prototypi-
cal examples of deterministic and stochastic sandpile au-
tomata. In this particular case, recent large scale simula-
tions [5–8] clearly indicate that Manna and BTW models
belong to different universality classes.

The universality class asset remains still uncertain for
the Zhang model [9], which is the archetype of all sand-
pile automata with continuous variables. This model has
deterministic dynamics like the BTW model, and in con-
trast with most other cases, it is non-Abelian. This means
that the stable configurations obtained at the end of an
avalanche depend on the order in which the active sites
are updated. In spite of this essential peculiarity, earlier
simulations of the model [9] placed it in the same univer-
sality class as the BTW model, of which it was supposed to
be the continuous counterpart. This conclusion was con-
firmed by the large scale simulations performed by Lübeck
in d = 2 [10]. On the other hand, Milshtein et al. [5],
analyzing different magnitudes than Lübeck, arrived at
the opposite result in d = 2, namely, they observed no-
ticeable differences in the critical exponents. Finally, the
simulations of Giacometti and D́ıaz-Guilera [11] provided
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evidence that, even though the exponents of both models
are similar in d = 2, they do not coincide in d = 3.

Recently, it has been shown [12,13] that the determin-
istic nature of the BTW model renders its scaling incom-
patible with the standard finite-size scaling (FSS) hypoth-
esis, and induces moreover peculiar non-ergodic effects [8].
Thus, it would not be surprising to find similar anomalies
in the Zhang model because of its deterministic nature. In
this paper we characterize the Zhang universality class by
applying the recently proposed moment analysis technique
[12,13]. In the following we will show that the scaling of
the Zhang model depends very strongly on the updating
mechanism implemented in the simulations, either paral-
lel or sequential. The Zhang model with parallel updating,
as it has been customarily defined in the literature, dis-
plays a complex scaling behavior that is not compatible
neither with the standard finite-size scaling (FSS) hypoth-
esis nor with the multifractal picture [14] proposed for the
avalanche distribution of the BTW model [13]. On the
other hand, the Zhang model with sequential updating
shows well defined size and area exponents. The origin
of the complex behavior of the parallel Zhang model can
be ascribed to the deterministic microscopic dynamical
rules of the model. In order to prove this conjecture, we
study a variation of the Zhang model, the stochastic par-
allel Zhang model, which exhibits a standard FSS behav-
ior, compatible with the universality class of the Manna
model.

We consider the definition of the original Zhang model
[9]. On each site of a d dimensional hypercubic lattice of
size L we assign a continuous variable Ei, called “energy”.
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At each time step, an amount of energy δ is added to a
randomly selected site j (Ej → Ej + δ). The quantity δ is
a random variable uniformly distributed in [0, δmax] [15].
In our simulations we consider the fixed value δmax = 0.25.
When a site acquires an energy larger than or equal
to 1, (Ek ≥ 1), it becomes active and topples. An ac-
tive site k relaxes losing all its energy, which is equally
distributed among its nearest neighbors: Ek → 0, and
Ek′ → Ek′ +Ek/2d. Here the index k′ runs over the set of
all nearest neighbors of the site k. The transported energy
can activate the nearest neighbor sites and thus create an
avalanche. Energy can be lost only at the boundary of the
system (open boundary conditions). The avalanche stops
when all sites in the lattice are subcritical (Ei < 1). Given
these dynamical rules, it is easy to see that the Abelian
nature of the model depends on the type of updating im-
plemented. With parallel updating – parallel Zhang (P-Z)
model – at each time step t in the evolution, all active
sites are toppled simultaneously, and time is incremented
t → t + 1. Since all the energy of an active site is trans-
ferred to its nearest neighbors, we notice that in a bipar-
tite lattice (such as the hypercubic lattice here considered)
all active sites at a give time step t reside onto the same
sublattice, and that activity alternates between the dual
sublattices in consecutive time steps. Again, since all the
energy is transferred in a toppling, the state of the active
sites in a sublattice at time t is independent of the order in
which the active sites in the dual sublattice were updated
at time t−1. On the other hand, with sequential updating
– sequential Zhang (S-Z) model – at each time step t an
active site is randomly chosen among all the Na(t) active
sites present at that time. The chosen site is toppled and
time is incremented t→ t+ 1/Na(t). In this case, activity
is not restricted to alternate sublattices, but spreads all
over the system. Depending on the order in which the in-
termediate list of over-critical sites is updated, any active
site with at least one active nearest neighbor can end up
with an energy Ei = 0 (if its nearest neighbors are up-
dated before it) or with energy Ei > 0 (if it is updated
before its nearest neighbors). In this case the model fully
exploits its non-Abelian character.

We have analyzed both parallel and sequential Zhang
models by determining their critical exponents [1]. In the
limit of an infinite slow driving, i.e. the energy addition
is interrupted during the avalanche evolution, defining a
complete time scale separation [16], the system reaches
a critical stationary state with avalanches of activity dis-
tributed according to power laws. If we define the proba-
bility distributions P (x) of occurrence of an avalanche of
a given size s, time t, and area a, the FSS hypothesis [17],
usually assumed in SOC systems, states that

P (x, L) = x−τxF
( x

Lβx

)
, (1)

with x = s, t, or a, respectively. If the FSS ansatz
is valid, then the critical exponents βx and τx com-
pletely determine the universality class of the model under
scrutiny [18].

Previous numerical works on the Zhang model [9–11]
have most often proceeded measuring the exponents as the

slope in a log-log plot of the density P (x, L) as a function
of the magnitude x. Even though with this procedure one
can determine the exponents within a 10% accuracy, its
performance is affected by the existence of the upper and
lower cutoffs, which render difficult its application. In this
respect, it is better to use analysis techniques that contain
explicitly the system-size dependency.

The moment analysis technique was introduced by
De Menech et al. in the context of the two dimensional
BTW model [12], and its validity has been extensively
checked for both Abelian and stochastic models [6,7]. In
this method, the qth moment of a probability distribution
on a lattice of size L is defined by 〈xq〉L =

∫
xqP (x, L)dx.

Assuming the FSS hypothesis, equation (1), the qth mo-
ment has the size dependence:

〈xq〉L = Lβx(q+1−τx)

∫
yq−τxF(y)dy ∼ Lβx(q+1−τx), (2)

where we have introduced the transformation y = x/Lβx .
In general, one has 〈xq〉L ∼ Lσx(q), where the exponent
σx(q) can be obtained as the slope of the log-log plot of
〈xq〉L as a function of L. If the FSS hypothesis is indeed
correct, we expect σx(q) ∼ βx(q + 1 − τx), and therefore
one can compute βx = dσx(q)/dq. For very small values
of q this is not correct, since the integral in (2) is dom-
inated by its lower cut-off. Once computed the exponent
βx, the corresponding τx is obtained using the scaling re-
lation σx(1) = βx(2− τx).

In order to apply the moment analysis technique, we
have performed simulations of the P-Z and S-Z models in
d = 2, for sizes ranging from L = 128 to L = 1024. Statis-
tical distributions are obtained by averaging over 5× 106

nonzero avalanches. As a consistency check of our algo-
rithm, we have estimated the average energy of the sys-
tem in the stationary state, defined by Ē = 〈

∑
iEi〉 /L2,

where the brackets denote an average over at least 106

stable configurations. Extrapolating to an infinite system
size, we obtain a value Ē = 0.630 ± 0.005 for the P-Z
model and Ē = 0.626 ± 0.005 for the S-Z model, both
in good agreement with previous estimates (Ē ∼ 0.62
−0.63) [9,11].

We have computed the moments σx(q) for our data
from both the P-Z and S-Z models. In the presence of
FSS, as we have argued above, one should expect to ob-
serve dσx(q)/dq = βx ≡ const. Simulations on the Manna
model, reference [7], show that this is indeed the case, with
a slope for the moments σx(q) that reaches a saturation
value for relatively small values of q [19].

In Figure 1 we have plotted dσx(q)/dq for the P-Z
model as a function of q, for q < 2.5. We observe that
all the moments present a noticeable curvature for all q,
and do not seem to reach a constant slope for the values
of q considered. For values of q larger than 4, the slope of
the moment functions seems to finally achieve a saturation
value. As an estimate of this trend, in Table 1 we report
the value of the local slope at different q’s, [13], defined by
∆σx(q) = σx(q+ 1)−σx(q). Assuming that the curvature
of the moments at small q is merely a crossover effect and
that the real exponents βx are given by the saturation
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Fig. 1. Derivative of the exponents σx(q) for the parallel Zhang
model. The monotonous increase of the exponent indicates the
lack of scaling in this model.

Table 1. Local slope of the moment exponents σx(q) in the
parallel Zhang model, for different values of q.

q 1 2 3 4 5
∆σs(q) 3.17 3.30 3.37 3.39 3.40
∆σt(q) 1.29 1.61 1.70 1.73 1.74
∆σa(q) 2.09 2.19 2.23 2.25 2.26

plateaus at large q, we are led to the values βs = 3.39,
βt = 1.74, and βa = 2.25. In particular, the value of βa is
completely unphysical: the maximum area of an avalanche
cannot grow faster than Ld in d dimensions, and thus βa
must be smaller than 2. This tells us that the FSS form
used in equation (2) is not adequate in the case of the P-Z
model, and leads to spurious results. In what respects to
the size and time distributions, we can check the validity
of this result by means of a data collapse technique: if
the FSS ansatz equation (1) is correct, then by rescaling
x → x/Lβx and P (x) → LβxτxP (x), we should obtain
distributions that collapse onto the same universal curve
for different values of L. In Figure 2 we plot the data
collapse of the size distribution P (s), with the exponents
βs = 3.39 and τs = 1.42. The really poor collapse of the
curves testifies that also the avalanche size distribution
does not fulfill the FSS in the P-Z model. We observe a
similar lack of collapse for the time distribution.

From Figures 1 and 2, and Table 1, we conclude that
the Zhang model with parallel updating violates the FSS
hypothesis, equation (1). Noticeably, this lack of FSS is ob-
served also in numerical simulations of the directed version
of the Zhang model [20]. We have also tried to fit our data
to the more general multifractal scaling form proposed by
Kadanoff et al. [14], and applied to the BTW model in
reference [13]. In this form of multifractal analysis, one
tries to collapse the data to the form log(P (x, L))/ log(αL)
as a function of log(x)/ log(αL), for a suitably chosen con-
stant α. We have checked that this sort of scaling is also
not compatible with our data of the original Zhang model.
In particular, we have not succeeded in finding a constant
α for which the scaling is correct.

The moment analysis of the S-Z model yields good re-
sults for the size and area distributions, with derivatives
of the moments σx(q) that reach a saturation plateau for
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Fig. 2. Data collapse analysis of the integrated distribution
of sizes, for the parallel Zhang model. System sizes are L =
128, 256, 512, and 1024. Exponents are βs = 3.39 and τs = 1.42.
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Fig. 3. Data collapse analysis of the integrated distribution
of sizes for the sequential Zhang model. System sizes are L =
128, 256, 512, and 1024. Exponents are τs = 1.29 and βs = 2.78.

small values of q. The values obtained are τs = 1.29(2)
and βs = 2.78(2) for the size exponents, and in Figure 3
we plot the data collapse analysis for the size distribution.
The perfect collapse of this figure confirms the good scal-
ing of this model. The same is obtained with the area dis-
tributions with exponents τa = 1.43(2) and βs = 1.94(2).
The time distribution, however, shows a lack of scaling,
with a not clear trend for the derivative βt = dσt(q)/dq
as a function of q. This feature could have several origins
included the possibility that in this case we do not have
yet reached the scaling regime because of the different time
updating, that gives a very small range of time scales.

The complex quality of scaling in the parallel Zhang
model can be attributed to the deterministic nature of
its dynamical rules, which is somehow smoothed by the
stochastic updating in the sequential model. In order to
check this conjecture, we propose a variant of the P-Z
model, the stochastic parallel Zhang model (SP-Z), in
which energy is stochastically redistributed. The model
is defined by the following modifications of the relaxation
rules. In the SP-Z model, an active site k loses all its en-
ergy, Ek → 0, which is randomly redistributed among its
nearest neighbors. In the practical implementation of this
rule, we draw four random numbers εk′ , 0 ≤ εk′ ≤ 1,
with

∑
k′ εk′ = 1 and update the nearest neighbors k′

by Ek′ → Ek′ + εk′Ek [21]. In this model, the stochastic
energy input is a random variable uniformly distributed
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Table 2. Critical exponents for the stochastic parallel Zhang
model (SP-Z) and the Manna (M) model. Figures in parenthe-
sis indicate the statistical uncertainty in the last digit. Data
for the Manna model from references [6,7].

Model τs βs τt βt τa βa
SP-Z 1.28(1) 2.76(1) 1.50(2) 1.53(2) 1.35(1) 2.02(2)
M 1.28(1) 2.76(1) 1.48(2) 1.55(1) 1.35(1) 2.02(2)
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Fig. 4. Data collapse analysis of the integrated distribution of
sizes for the stochastic parallel Zhang model. System sizes are
L = 128, 256, 512, and 1024. Exponents from Table 2.

in [0, δmax], with δmax = 0.25. Sites still have a contin-
uous spectrum of energy, but the new dynamical rules
are stochastic. If the assumption that stochasticity yields
a standard scaling behavior, then this model should be
regarded as the continuous counterpart of the original
Manna model [3].

We have performed numerical simulations of the
SP-Z model in system sizes ranging from L = 128 to
L = 1024, averaging the probability distributions over
5×106 nonzero avalanches. We observe that slope of σx(q)
reaches a saturation value for very small values of q, for
sizes, areas, and also times. In Table 2 we report the val-
ues obtained for the exponents βx and τx. As expected, the
exponents are in perfect agreement with the values found
in the Manna model. This fact confirms the presence of
a unique universality class for all stochastic models. As a
final check, we show in Figure 4 the data collapse analysis
for the distribution of sizes. The perfect collapse of these
plots should be compared with the poor result obtained
in the original Zhang model, shown in Figure 2.

In summary, applying the moment analysis technique,
we have shown that the scaling of the Zhang model de-
pends on the updating rules implemented in the simula-
tions. The Zhang model with parallel update violates the
FSS hypothesis equation (1) for the avalanche distribu-
tions of sizes, times, and areas. The anomalous scaling
is stronger than in the BTW model, since data cannot
be fitted even to the more general multifractal scaling
form. This, contrary to previous claims [5,10,11], makes
impossible to assign any precise universality class to
this model. The sequential updating introduces a small
amount of stochasticity in the Zhang model that, in this
case, shows FSS for the size and area distributions. In spite
of this property, the lack of scaling for the time distribu-

tion does not allow to place the sequential Zhang model
in a definite universality class. The anomalous scaling of
the original Zhang model can be therefore ascribed to the
deterministic nature of the dynamical rules defining the
model. A stochastic version of the model shows a stan-
dard FSS behavior, compatible with the universality class
of the Manna model.
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